(1)在粉末制备方面,目前**引人注目的是超高温技术。利用超高温技术不但可廉价地研制特种陶瓷,还可廉价地研制新型玻璃,如光纤维、磁性玻璃、混合集成电路板、零膨胀结晶玻璃、高强度玻璃、人造骨头和齿棍等。此外,利用超高温技术还可以研制出象钽、钼、钨、钒铁合金和钛等能够应用于太空飞行、海洋、核聚变等尖端领域的材料。例如日本在4000—15000℃和一个大气压以下制造金钢石,其效率比现在普遍采用的低温低压等离子体技术高一百二十倍。
超高温技术具有如下优点:能生产出用以往方法所不能生产的物质;能够获得纯度极高的物质:生产率会大幅度提高;可使作业程序简化、易行。目前,在超高温技术方面居**地位的是日本。据统计,2000年日本超高温技术的特种陶瓷市场规模也将会超过20万亿日元。此外,溶解法制备粉末、化学气相沉积法制备陶瓷粉末、溶胶K凝胶法生产莫来石超细粉末以及等离子体气相反应法等也引起了人们的关注。在这几种方法中,绝大部分是近年开发研究出来的或是在近期得以完善的。
(2)成型方面:特种陶瓷成型方法大体分为干法成型和湿法成型两大类,干法成型包括钢模压制成型、等静压成型、超高压成型、粉末电磁成型等;湿法成型大致可分为塑性成型和胶态浇注成型两大类。近些年来胶态成型和固体无模成型技术在特种陶瓷的成型研究中也取得了较为快速的发展。
陶瓷胶态成形是高分散陶瓷浆料的湿法成形,与干法成形相比,可以有效控制团聚,减少缺陷。无模成形实际上是快速原型制造技术(Rapid prototyping manufacturing technology,RP &M) 在制备陶瓷材料中的应用。特种陶瓷材料胶态无模成形过程是通过将含或不含粘结剂的陶瓷浆料在一定的条件下直接从液态转变为固态,然后按照RP &M 的原理逐层制造得到陶瓷生坯的过程。成形后的生坯一般都具备良好的流变学特性,可以保证后处理过程中不变形。
特种陶瓷成型技术未来的发展将集中于以下几个发面:
a、进一步开发已经提出的各种无模成形技术在制备不同陶瓷材料中的应用;
b、性能更加复杂的结构层以及在层内的穿插、交织、连接结构和成分三维变化的设计;
c、大型异形件的结构设计与制造;
d、 陶瓷微结构的制造及实际应用;
e、进一步开发无污染和环境协调的新技术。
(3)烧结方面:特种陶瓷制品因其特殊的性能要求,需要用不同于传统陶瓷制品的烧成工艺与烧结技术。随着特种陶瓷工业的发展,其烧成机理、烧结技术及特殊的窑炉设施的研究取得突破性的进展。目前特种陶瓷的主要烧结方法有:常压烧结法、热压烧结/热等静压烧结法、反应烧结法、液相烧结法、微波烧结法、电弧等离子烧结法、自蔓延烧结法、气相沉积法等。
(4)在特种陶瓷的精密加工方面:特种陶瓷属于脆性材料,硬度高、脆性大,其物理机械性能(尤其是韧性和强度)与金属材料有较大差异,加工性能差,加工难度大。因此,研究特种陶瓷材料的磨削机理,选择**佳的磨削方法是当前要解决的主要问题。
近年来兴起的磨削加工方法主要有:
a、超声波振动磨削加工方法;
b、在线电解修整金刚石砂轮磨削加工方法;
c、电解、电火花复合磨削加工工艺;
d、电化学在线控制加工方法。
采用刀具加工陶瓷也引起了人们的极大兴趣。目前,这方面的工作仅处于研究实验阶段,由于用超高精度的车床和金刚石单晶车刀进行加工,以微米数量级的微小吃刀深度和微小的走刀量,能获得0.1微米左右的加工精度,因而许多国家把这种加工技术作为超精密加工的一个方面而加以开发研究,在中国,清华大学新型陶瓷与精细工艺国家重点实验室在这方面的研究成果已位居世界前列。